If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-30y+100=10
We move all terms to the left:
y^2-30y+100-(10)=0
We add all the numbers together, and all the variables
y^2-30y+90=0
a = 1; b = -30; c = +90;
Δ = b2-4ac
Δ = -302-4·1·90
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{15}}{2*1}=\frac{30-6\sqrt{15}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{15}}{2*1}=\frac{30+6\sqrt{15}}{2} $
| -x-3x=5+2x | | -22=13x+4 | | 2(5x+6)=-31+3 | | a=-4.5a+17 | | 5u+-12=18 | | -15x+6=-39 | | 5u+12=18 | | -12x-1=11 | | 5(2x+8)=-40+30 | | 8x+10+2x=30 | | 8x2(2)-7=193 | | 10x+12=-48 | | -17/5r+33/5(9/2r+11/7)=26111/210 | | 116+74+4x+(x+5)=360 | | 3x-5+6x+10=32 | | 6d-4d=2 | | 3x^2+2x-20=2x^2+15 | | 4z-2z=10 | | z-52=3 | | 5-3c+2=2c-3 | | 9/14=x/84x= | | 6xX+X=10 | | 14+3h=5 | | x2-15=5 | | 0.25w=8 | | 837/10=6(9/2v-9/5) | | 2(4x+6)=-29+17 | | 8(1+2x)=-104 | | 90-m=36 | | 6q+5=-14q+5 | | 32+x^2=12x90 | | -4x-4=2x-6 |